The Coligny Calendar

According to Wikipedia – ‘The Coligny calendar is a peg calendar (or parapegma) made in Roman Gaul in ca. the 2nd century AD, giving a five-year cycle of a lunisolar calendar with intercalary months.’

There is only about 45% of the Calendar remaining making it very difficult to decipher

System -

- The Continental Celtic calendar as reconstructed from the calendars of Coligny and Villards d’Heria had the following properties:
- It was a lunisolar calendar, attempting to synchronize the solar year and the lunar month.
- The months were lunar. Scholars disagree as to whether the start of the month was the new moon or the full moon.
- The common lunar year contained 354 or 355 days.
- The calendar year began with Samonios, which is usually assumed to correspond to Old Irish Samhain, giving an autumn start to the year. However, as Samon is Gaulish for summer (Lambert p.112), this assumed start is disputed. Le Contel and Verdier (1997) argue for a summer solstice start of the year. Monard (1999) argues for an autumn equinox start. Bonsing (2007) argues for a May beginning consistent with Irish Beltaine, and Fennian literature, notably Joyce (2000).
- The entry TRINVX[tion] SAMO[nii] SINDIV “three-nights of Samonios today”) on the 17th of Samonios suggests that a festival of Samhain was considered to last for three nights.
- The solar year was approximated by the insertion of a 13th intercalary month every two and a half years (unlike the Islamic calendar, where the calendar year keeps shifting in relation to the solar year). The additional months were intercalated before Samonios in the first year, and between Cutos and Giannonios in the third year. The name of the first intercalary month is not known with certainty, the text being fragmentary; the second intercalary month is Ciallos bis Sonnocingos (Lambert p.116)
- The months were divided into two halves, the beginning of the second half marked with the term Atenoux. The basic unit of the Celtic calendar was thus the fortnight or half-month, as is also suggested in traces in Celtic folklore. The first half was always 15 days, the second half either 14 or 15 days on alternate months (similar to Hindu calendars).
• Months of 30 days were marked Mat(os), lucky. Months of 29 days were marked Anm(atos), unlucky.

• A simple five year cycle would be insufficiently accurate; the sequence of intercalary months is completed every thirty years, after five cycles of 62 lunations with two intercalary months each, and one cycle of 61 lunations, with a single intercalary month, or after a total of 11 intercalary months. This assumes that there are exactly 371 lunations in 30 years, which is accurate to a one day every 20 or 21 years on average (this is less accurate than the Julian calendar, which shifts a day in about 130 years, but which ignores lunar months). It may be assumed that the "30 years cycle" was not prescriptive, and that an extra month would have been omitted as the need arose (i.e. some 300 years after the calendar's inception).

• The interpretation of atenoux as "returning night" is improbable (Delamarre p.58) and "renewing" would seem more probable; thus the month would start at new moon and atenoux would indicate the renewal, i.e. the full moon.

(http://calendars.wikia.com/wiki/Coligny_calendar)

“The word parapegma (pl.: parapegmata) refers to an ancient instrument which was used to keep track of astronomical, astrological or astrometeorological cycles using a moveable peg or pegs. By extension, the word also refer to a group of texts which were derived from these instruments, and which tracked the astrometeorological cycle typically by linking it to a calendar.

… they provided some means for locating the current day in the context of the larger temporal scheme, either by indexing the cycle to a calendar, or by indicating the current day with a peg. I call this process tracking a lunar or astrometeorological cycle. In inscriptive parapegmata, each entry would have a hole drilled beside it to receive a moveable peg. The peg would be shifted on each consecutive day, and thus the inscription beside the peg would contain the information pertaining to the current day.

There were also non-inscriptive, literary parapegmata in both Greek and Latin. A typical example of these would list the dates of a coming year in, for example, the Roman or Egyptian calendar, and, for particular dates, offer astronomical and weather predictions for that year. In this respect, they are rather like a pared-down version of a more modern Farmer’s Almanac.”

Astronomy, Weather, and Calendars in the Ancient World: Parapegmata and Related Texts in Classical and Near-Eastern Societies

Daryn Lehoux (Cambridge University Press 2007)

The importance of long-term weather prediction is invaluable to farmers – ‘Make hay while the Sun shines’ – today with modern weather forecasting and machinery this is not as problematic, but the hay still needs to be dry to harvest and if it becomes ‘over-ripe’ it loses value, so there is still a fairly narrow time-window of opportunity – this is why you will see farmers with threshers and bailers working under floodlight until midnight on occasion at harvest time.

To our ancient ancestors this was a much bigger problem – a field of hay took days to cut and stack, the stocks then needed to ‘dry off’ before they could be brought in, so did you plant your hay to be ready to harvest at the beginning or the end of August? Or maybe it would be better to plant it to harvest at the beginning of September. Get it wrong and your animals could starve in the winter, or worse still your whole communities animals could starve.

To have a method that could predict what the weather was going to do in August or September could be life-saving. Rural folk have always had proverbs about weather patterns:-
• Oak before Ash – In for a Splash, Ash before Oak – In for a Soak (Summer weather proverb)
• Red Sky at Night, shepherds delight – Red Sky in Morning, shepherds warning (next day weather proverb)

This information has been gleaned from ‘weather watching’ over long periods of time and today quite a few of them are backed up with meteorological evidence – before this ‘Almanac’ were a ‘must buy’ – ‘Old Moore’s’ produced for the UK in Ireland and ‘The Farmers’ produced in the US – these provided all the information for the forthcoming year.

As Daryn Lehoux describes – our ancient ancestors had parapegma – the image below of a section of the Coligny Calendar clearly shows the peg holes.